

Carbon Markets for Improved Cooking Stoves

AGRECOL Herbsttreffen, Stuttgart, 14. – 16. Oktober 2011

Marlis Kees Poverty-oriented basic energy services (HERA) Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

gíz

Basic facts solid biomass based cooking energy

- 2.5 billion depend on biomass for their daily cooking, 2,7 billion in 2030
- The demand for biomass resources leading to deforestation, land degradation, desertification
- Indoor air pollution from solid fuel use is responsible for 1.9 million deaths every year (WHO, 2010)

Clean Cook Stove Technologies are more efficient and nearly smokeless

HH rocket stove

Clean burning biomass stoves

Clean fuel (LPG, ethanol, plantoil, biogas, electricity)

Improved Kitchen and Fuel Management rocket stove for cantines

HH rocket

Industrilally produced rocket stove

Plant oil cooker

Interventions needed for developing local stove markets

- R&D for stove adaptation and development
- Training of stove producers in technical and business skills
- Support in product marketing
- Quality control
- Long term and cross sector awareness raising
- GIZ Experience (based on approx 2 Mio stoves since 2005) Costs per person: 5€

- Global need: 500-600 Mio households
- GIZ: since 2005 approx 2 Mio stoves,
- Major European implementer (BSH, GERES, GIZ, PA, SNV, SF): 5.2 Mio
- Goal of "Global Alliance for Clean Cookstoves":

An additional 100 Mio homes use clean cookstoves by 2020

(www.cleancookstoves.org)

Why dealing with carbon finance?

•Carbon funding calls for very efficient stoves

Increased investments and attention to stove technologies and stove testing

•Carbon funding requires intensive monitoring of stove use

Intensive attention to users which helps changing cooking habits

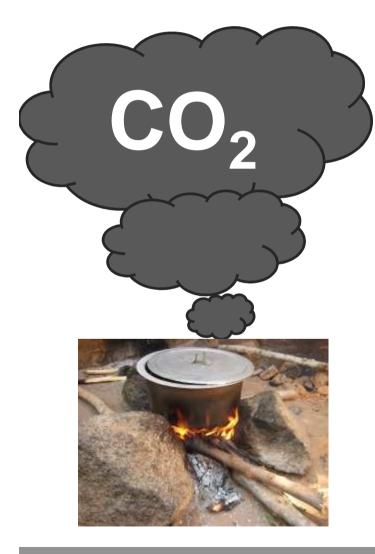
•Carbon funding requests long term monitoring (>7years)

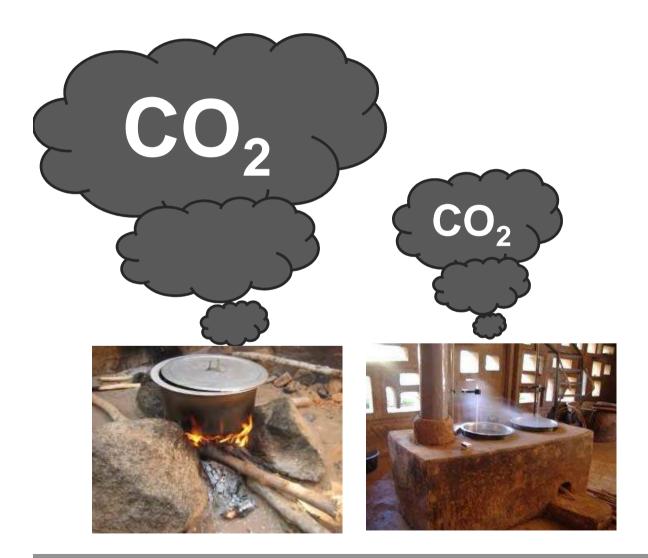
>Long-term project perspective

Why dealing with carbon finance?

- •Each improved stove saves at least 1 to of CO₂
- •ODA budget needs:
 - A project disseminating 10.000 stoves costs
 - 10.000 * 5persons * 5€ = 250.000€
- Carbon Funding possibilities (CER or VER):
 - assuming a price of $7 \in \text{per to of } CO_2$,
 - a project disseminating 10.000 stoves
 - would earn 70.000€ per year for at least 7 years
 - (Total 490.000€)

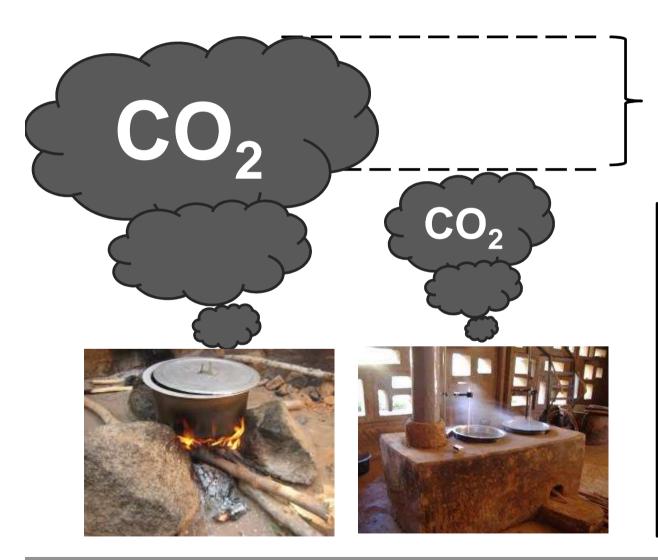
CF offers enormous Potential for upscaling existing projects well beyond ODA-funding




giz The Clean Development Mechanism

Project eligibility criteria

 reduce greenhouse gas emissions (measurable and verifiable)
 contribute to the sustainable development of the host country
 emission reductions are additional to any that would occur in the absence of the project activity


giz The Clean Development Mechanism

Project eligibility criteria

 reduce greenhouse gas emissions (measurable and verifiable)
 contribute to the sustainable development of the host country
 emission reductions are additional to any that would occur in the absence of the project activity

giz The Clean Development Mechanism

Project eligibility criteria

 reduce greenhouse gas emissions (measurable and verifiable)
 contribute to the sustainable development of the host country
 emission reductions are additional to any that would occur in the absence of the project activity

Carbon Market Baseline Methodologies

_		Methodology Name	Issues covered
	AMS-I.E.	Switch from Non-Renewable Biomass for Thermal Applications by the User	Displacing the use of non-renewable biomass by introducing new renewable energy end-user technologies. Examples: biogas stoves and solar cookers.
(AMS-II.G	Energy Efficiency Measures in Thermal Applications of Non- Renewable Biomass	 <u>Efficiency improvements</u> in the thermal applications of non-renewable biomass. Examples: high efficiency biomass fired cook stoves and/or improvement of energy efficiency of existing biomass fired cook stoves.
	Gold Standard VER	Indicative Programme, Baseline, and Monitoring Methodology for Improved Cook-Stoves and Kitchen Regimes	 Switch from cook-stoves and kitchen regimes having significant green-house gas emissions to those having considerably less or zero emissions. The baseline may involve the use of more than one fuel type and more than one stove type, and the switch to low emission regimes may involve a shift in the apportionment of fuel types and/or adoption of new fuels and cook-stoves.

The Carbon Market (09/2011) for cookstoves

CDM Projects (AMS II.G)

Selling credits:	1	Nigeria
Registered:	5	
In Validation:	5	
 In pipeline; 	31	

Gold Standard Voluntary Market Projects

- Registered: 3
- Validated: 5
- Listed: 70!!!

Large scale interventions are easier plan, implement and monitor than

16.10.2011 Seite 13

many small scale interventions.

16.10.2011 Seite 14

Funding needed for ICS introduction via ODA or CF

ODA project

Training and mobilisation Coordination of stove dissemination Awareness Promotion Technology development Monitoring

Carbon project

CPA Identification Baseline information collection Stove efficiency testing Maintenance and quality assurance CDM Monitoring and reporting Design Documents preparation CPA inclusion fee Annual programme costs

Training and mobilisation Coordination of stove dissemination Awareness Promotion Technology development monitoring

Case Study I (Data from 2009) Efficient Woodfuel Stoves for Nigeria

Number of stoves in operation, large/small scale Small scale, up to 11,000 stoves per year

Emission reductions 35,000 t CO2 per year over a period of 10 years 308,198 t CO2 in total until 2018

all information taken from CDM PDD URL: http://cdm.unfccc.int/Projects/Validation/DB/23HQ9GTETWW0K8C0A6R4Q0BSMJJBFP/view.html

Case Study I (Data from 2009) Efficient Woodfuel Stoves for Nigeria

Methodology

AMS II.G Compliance Market (CDM)

Status in Project Cycle

Validation completed, Registered October 2009, first CERs expected for 2010

Implementing Institutions

Nigerian Development Association for Renewable Energies (DARE), Lernen-Helfen-Leben e.V., atmosfair gGmbH

Technology

Save 80 system (efficient woodfuel stove and heat retaining polypropylene box), imported from Germany and assembled in Nigeria (full production in Nigeria planned for later project stages)

all information taken from CDM PDD URL: http://cdm.unfccc.int/Projects/Validation/DB/23HQ9GTETWW0K8C0A6R4Q0BSMJJBFP/view.html

Number of stoves in operation, large/small scale

Large scale, number of stoves in use is projected to increase from 116,450 in 2006 to 513,803 in 2012

Emission reductions

- 126,022 t CO2 **verified** for 2007
- PDD projected average 449,932 t CO2 per year over a period of 7 years; amount of ER is projected to increase from 175,683 t CO2 in 2006 to 614,537 t CO2 in 2010;
- the PDD forecasts a possible market saturation between 2010-2012 and hence emission reductions in these years of 488,533 t CO2 only
- Projected 3,149,527 t CO2 in total 2006-2012

Picture taken from http://www.bioenergylists.org/en/node/470

Case Study II (Data from 2009)

Fuel-Wood Savings with Improved Cookstoves in Cambodia Methodology

Derived from AMS II.G with elements of GS V.01 (includes emission reductions during fuel production), Voluntary Market

Status in Project Cycle

Registered under Voluntary Carbon Standard (VCS)

Implementing Institutions

JP Morgan Ventures Energy Corporation (Climate Care), Groupe Energies Renouvelables, Environnement et Solidarités (GERES) Cambodia, Wood Energy Network of Cambodia (WENETCAM), Development and Appropriate Technology (DATe), Directorate of Energy, Ministry of Industries, Mines and Energy

Technology

Lao stove (one size fits households and institutional users)

all information on Cambodia Project taken from Verification Report (URL: http://www.jpmorganclimatecare.com/media/documents/pdf/Verification_0140A_Cambodia_070607.pdf) and PDD Dec 2006 (URL: http://www.co2solidaire.org/pdf/GERES_ICS-PDD.v5.pdf)

Why dealing with carbon finance?

- Potential for upscaling existing projects well beyond ODA-funding, enforcing strict monitoring
- Risk of market distortion / loss of reputation of stove projects through unsustainable project approaches

Challenges

- Lack of up-front financing: issuance of first carbon credits can take up to 2 years or longer
- Elaborate administrative and monitoring procedures require good management capacities from local stakeholders
- Little local initiative/ownership for carbon projects
- **Dubious players** in the market
- Incorporating principles of sustainability

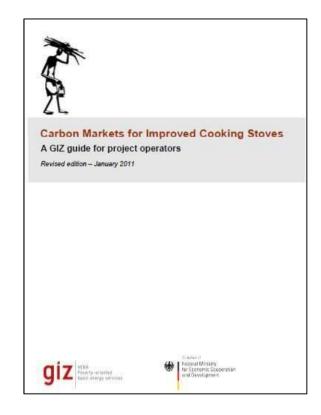
GIZ's involvement

- Scaling-up sustainable GIZ approaches through carbon funding: initial support for selected carbon finance projects based on GIZ projects (PIN/PDD), e.g. SADC PoA
- Advice / Awareness creation for GIZ project staff & local partner organisations on carbon finance issues
- Guidebook "Carbon Markets for Improved Cooking Stoves A GIZ Guide for Project Operators"
- Emission Reduction Calculation Tool (MS Excel)
- Feeding GIZ's experience into the international discussion: e.g. participation in the Global Alliance for Clean Cookstoves Working Group on Carbon Finance
- End-to-end solutions for credit buyers, including project development assistance and emission credits trading assistance (GIZ International Services)

Handbook: "Carbon Markets for Improved Cooking Stoves"

- Guide on procedures and methodologies for carbon market activities with improved cooking stoves
- In-Depth guidance for projects using the CDM AMS II.G and Gold Standard V.02 methodology
- Revised Edition 01/2011
- Updated/revised on a regular basis:

www.gtz.de/HERA


Carbon Markets for Improved Cooking Stoves

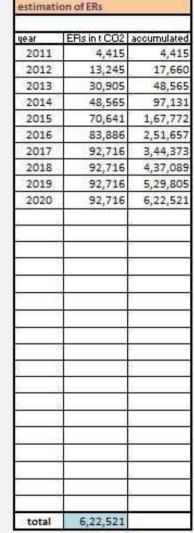
A GIZ guide for project operators	· · · ·	Box 6
Revised edition - January 2011	Indicators that biomass is non-renewable (AMS II.G Version 2)	
	 Increase in time spent or distance travelled to gather fuel-wood (by fuel- wood users) 	
	, Increase in transportation distances for the fuel wood transported into the project area	
	 Increasing trends in fuel-wood prices indicating scarcity 	
	. Change (trends) in type of cooking fuel collected by users, suggesting scarcity of woody biomass	
	Non-renewable woody biomass (NRB) is the quantity of woody biomass used in the absence of the project activity minus the demonstrably re- newable biomass (DRB) component. Non-renewability is considered proven if <u>at least two</u> of the above indicators are proven to exist. (AMS II.G Version 2)	
OIZ HEA Monther Theory Transfer	3.1 The CDM methodology AMS II.G Existing Versions of the Methodology	
Size train string services	After introducing AMS II.G Version 1 in February 2008, the CDM EB approved a new version of AMS II.G (Version 2), in December 2009; it came into force on 18 December 2009. The validity period of AMS II.G Version 1 ended in mid Au- gust 2010. This guide is based on Version 2 of the method- ology.	
	Project Boundary	
	The boundary of a CDM project activity needs to be clearly defined. It must encompass all anthropogenic GHG emis- sions and emission reductions attributable to the project ac- tivity. The project boundary is "the physical, geographical site of the efficient system using biomass".	
	Assessing baseline and calculating emissions	
	The methodology assumes that in the absence of the project activity, a fossil fuel (kerosene, liquefied petroleum gas, etc.)	Calculations are based on a fossil fuel scenario

Handbook: "Carbon Markets for Improved Cooking Stoves"

- 1. Overview and Background
- 2. Project Cycle
- 3. Baseline Methodologies
 - 1. The CDM methodology AMS II.G
 - 2. The Gold Standard methodology V.02
 - 3. Which methodology delivers more?
- 4. Implementation
 - 1. Roles and responsibilities
 - 2. CDM Programme of Activities (PoA)
 - 3. Use of Carbon Revenues
 - 4. Costs and revenues of stove projects
- 5. Frequently Asked Questions

giz ER Excel Calculation Tool

GIZ-HERA Emission Reduction Calculation Tool (1.3) for AMS-II.G version 2

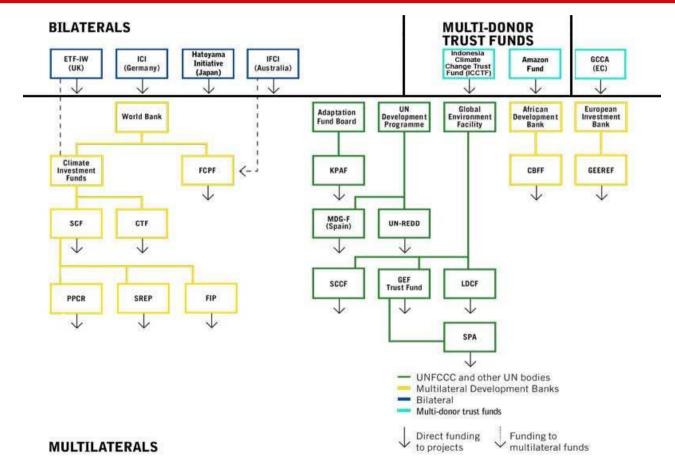

Last Tool-Update: July 2010

Please fill in green cells!			
r lease hit in green dens.			unit
Starting year of project operation	2011	2	date
Expected project duration	10	?	years
Biomass-fuel type	fire-wood	2	
Estimated stove lifetime	3	?	years
Projected fossil fuel	LPG	2	
Quantity of biomass used per baseline appliance and day	4	?	kg/d
Stove Testing Method	WBT	?	8
Efficiency old stove derived from a WBT	12	2	96
Efficiency new stove derived from a WBT	20	?	96
fNRB	80	2	96
Quantity of Biomass used per baseline appliance and year	1.46	-	t/a
Net Calorific Value Biomass	15.00	1	MJ/kg
Emission Factor projected Fossil Fuel	63		t Co2/TJ
Biomass savings per stove and year	0.58	86 	t/a
Emission reductions per stove and year	0.44	9	t Co2/a

CDM-Small-Scale Limit for project scenario (max, energy	savings 180.000 MW	/h/a)
Net Calorific Value Biomass	4.17	MWh/t
Baseline Energy Generation per appliance	6.08	MWh/a
Energy-Savings (1-ηold/ηnew) in %	40	96
Energy Generation per appliance (new)	4.87	MWh/a
Energy Savings per appliance (new) and year	1.22	MWh/a
Small-Scale-Limit in No. Of stoves in Use per year	1,47,945	stoves
Small-Scale-Limit in emission reductions per year	65,318	t CO2/a

Summary Emission Reductions		-
Average Emission Reductions per year	62,252	t CO2/a
Total after 10 years	6,22,521	t CO2
Total full project duration	6,22,521	t CO2

stove sales schedule		stove us	age schedu
ase fill	in stove sal	77. 	
year	stove sales	year	stoves in u
2011	10,000	2011	10,0
2012	20,000	2012	30,0
2013	40,000	2013	70,0
2014	50,000	2014	1,10,0
2015	70,000	2015	1,60,0
2016	70,000	2016	1,90,0
2017	70,000	2017	2,10,0
2018	70,000	2018	2,10,0
2019	70,000	2019	2,10,0
2020	70,000	2020	2,10,0
_		2021	1,40,0
	i γ	2022	70,0
total	5,40,000	-	1



Selte 25

Current situation

Zunehmende Heterogenität der Fonds, Anforderungen, Modalitäten und Zugangsmöglichkeiten, aber auch neue Chancen (geplanter Int "Green Fund": 100Mrd USD/Year

Seite 26

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Marlis.Kees@giz.de

www.giz.de

The handbook and calculation tool are available at <u>www.gtz.de/HERA</u> (\rightarrow further information)

